Search results for "Sodalis glossinidius"

showing 5 items of 5 documents

Mobile genetic element proliferation and gene inactivation impact over the genome structure and metabolic capabilities of Sodalis glossinidius, the s…

2010

Abstract Background Genome reduction is a common evolutionary process in symbiotic and pathogenic bacteria. This process has been extensively characterized in bacterial endosymbionts of insects, where primary mutualistic bacteria represent the most extreme cases of genome reduction consequence of a massive process of gene inactivation and loss during their evolution from free-living ancestors. Sodalis glossinidius, the secondary endosymbiont of tsetse flies, contains one of the few complete genomes of bacteria at the very beginning of the symbiotic association, allowing to evaluate the relative impact of mobile genetic element proliferation and gene inactivation over the structure and funct…

lcsh:QH426-470Tsetse Flieslcsh:BiotechnologyPseudogeneProphagesBacterial genome sizeBiologyWigglesworthia glossinidiaGenomeEnterobacteriaceaelcsh:TP248.13-248.65GeneticsAnimalsGene SilencingSymbiosisGeneGeneticsfungiSodalis glossinidiusGenomicsbiology.organism_classificationlcsh:GeneticsWigglesworthiaGenes BacterialDNA Transposable ElementsMobile genetic elementsPseudogenesBiotechnologyResearch ArticleBMC Genomics
researchProduct

Metabolic Networks of Sodalis glossinidius: A Systems Biology Approach to Reductive Evolution

2012

BackgroundGenome reduction is a common evolutionary process affecting bacterial lineages that establish symbiotic or pathogenic associations with eukaryotic hosts. Such associations yield highly reduced genomes with greatly streamlined metabolic abilities shaped by the type of ecological association with the host. Sodalis glossinidius, the secondary endosymbiont of tsetse flies, represents one of the few complete genomes available of a bacterium at the initial stages of this process. In the present study, genome reduction is studied from a systems biology perspective through the reconstruction and functional analysis of genome-scale metabolic networks of S. glossinidius.ResultsThe functiona…

Genome evolutionTsetse FliesSystems biologyScienceGenomeMicrobiologyModels BiologicalAnimals Genetically ModifiedEvolution MolecularEnterobacteriaceaeEscherichia coliAnimalsComputer SimulationBiologyGeneticsEvolutionary BiologyMultidisciplinarybiologyHost (biology)Human evolutionary geneticsBacterial genomicsSystems BiologyQSodalis glossinidiusEnterobacteriaceae InfectionsRComputational BiologyGenomicsbiology.organism_classificationPhenotypePhenotypeEvolutionary biologyHost-Pathogen InteractionsMedicineDirected Molecular EvolutionGenome BacterialMetabolic Networks and PathwaysResearch Article
researchProduct

The Tsetse Fly Displays an Attenuated Immune Response to Its Secondary Symbiont, Sodalis glossinidius

2019

Sodalis glossinidius, a vertically transmitted facultative symbiont of the tsetse fly, is a bacterium in the early/intermediate state of its transition toward symbiosis, representing an important model for investigating how the insect host immune defense response is regulated to allow endosymbionts to establish a chronic infection within their hosts without being eliminated. In this study, we report on the establishment of a tsetse fly line devoid of S. glossinidius only, allowing us to experimentally investigate (i) the complex immunological interactions between a single bacterial species and its host, (ii) how the symbiont population is kept under control, and (iii) the impact of the symb…

Microbiology (medical)Glossinamedia_common.quotation_subjectPopulationlcsh:QR1-502InsectMicrobiologylcsh:MicrobiologyMicrobiologyTranscriptometranscriptomics03 medical and health sciencesImmune systemimmune interactioneducationOriginal Research030304 developmental biologymedia_common0303 health scienceseducation.field_of_studyInnate immune systembiology030306 microbiologyfungiSodalis glossinidiusTsetse flybiochemical phenomena metabolism and nutritionSodalis glossinidiusbiology.organism_classificationChronic infectionhost-symbiont crosstalkbacteriaFrontiers in Microbiology
researchProduct

Paratransgenic manipulation of tsetsemiR275alters the physiological homeostasis of the fly’s midgut environment

2021

AbstractTsetse flies are vectors of parasitic African trypanosomes (Trypanosomaspp.). Current disease control methods include fly-repelling pesticides, trapping flies, and chemotherapeutic treatment of infected people. Inhibiting tsetse’s ability to transmit trypanosomes by strengthening the fly’s natural barriers can serve as an alternative approach to reduce disease. The peritrophic matrix (PM) is a chitinous and proteinaceous barrier that lines tsetse’s midgut. It protects the epithelial cells from the gut lumen content such as food and invading trypanosomes, which have to overcome this physical barrier to establish an infection. Bloodstream form trypanosomes shed variant surface glycopr…

biologyfungiSodalis glossinidiusTrypanosomaTsetse flyParatransgenesisMidgutPeritrophic matrixbiology.organism_classificationMicrobiologySymbiotic bacteriaGenetically modified organism
researchProduct

Paratransgenic manipulation of a tsetse microRNA alters the physiological homeostasis of the fly’s midgut environment

2021

Tsetse flies are vectors of parasitic African trypanosomes, the etiological agents of human and animal African trypanosomoses. Current disease control methods include fly-repelling pesticides, fly trapping, and chemotherapeutic treatment of infected people and animals. Inhibiting tsetse’s ability to transmit trypanosomes by strengthening the fly’s natural barriers can serve as an alternative approach to reduce disease. The peritrophic matrix (PM) is a chitinous and proteinaceous barrier that lines the insect midgut and serves as a protective barrier that inhibits infection with pathogens. African trypanosomes must cross tsetse’s PM in order to establish an infection in the fly, and PM struc…

PhysiologyGenes InsectBiochemistryAnimals Genetically ModifiedMedical ConditionsGene expressionMedicine and Health SciencesHomeostasisPeritrophic matrixBiology (General)Protozoans0303 health sciencesbiologyGene OntologiesSodalis glossinidiusEukaryotaCardiaGenomicsBody FluidsCell biologyIntestinesNucleic acidsBloodDigestionAnatomyResearch ArticleSymbiotic bacteriaTrypanosomaTsetse FliesQH301-705.5ImmunologyParatransgenesisMicrobiology03 medical and health sciencesVirologyParasitic DiseasesGeneticsAnimalsNon-coding RNAMolecular Biology030304 developmental biologyNatural antisense transcripts030306 microbiologyfungiOrganismsBiology and Life SciencesComputational BiologyTsetse flyMidgutRC581-607Genome Analysisbiology.organism_classificationParasitic ProtozoansGastrointestinal MicrobiomeInsect VectorsGene regulationGastrointestinal TractMicroRNAsTrypanosomiasis AfricanTrypanosomaRNAParasitologyGene expressionImmunologic diseases. AllergyPhysiological ProcessesDigestive SystemPLOS Pathogens
researchProduct